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a b s t r a c t

In this article, we consider the problemof testing the equality ofmean vectors of dimension
p of several groups with a common unknown non-singular covariance matrix 6, based
on N independent observation vectors where N may be less than the dimension p. This
problem, known in the literature as the multivariate analysis of variance (MANOVA) in
high-dimension has recently been considered in the statistical literature by Srivastava
and Fujikoshi (2006) [8], Srivastava (2007) [5] and Schott (2007) [3]. All these tests are
not invariant under the change of units of measurements. On the lines of Srivastava and
Du (2008) [7] and Srivastava (2009) [6], we propose a test that has the above invariance
property. The null and the non-null distributions are derived under the assumption that
(N, p) → ∞ and N may be less than p and the observation vectors follow a general non-
normal model.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The problem of testing the equality of mean vectors of several groups with common unknown nonsingular covariance
matrix, the so called MANOVA or multivariate analysis of variance has been considered many times in the statistical
literature. For normally distributed observation vectors when the total sample size N is considerably larger than the
dimension p of the vector, Wilks [9] likelihood ratio test is commonly used with Box’s [2] approximation for the distribution
of the test statistic. For dimension p larger than the sample size N , this testing problem has also been recently considered
in the literature by Srivastava and Fujikoshi [8], Srivastava [5], Schott [3] and Yamada and Srivastava [10] for normally
distributed observation vectors.

In this article, we consider a generalmodel which includes normal distributions and propose a test that is invariant under
the change of units ofmeasurements. That is, the test statistic is invariant under the transformation by non singular diagonal
matrices. Thus, without any loss of generality, we assume that the covariance matrix is a correlation matrix 3 = 31/231/2,
where31/2 is the unique positive definitematrix. Since theMANOVA problem is a special case of themultivariate regression
model, we assume that the N × pmatrix of observations follow the model

Y = X2 + U31/2 (1.1)

where X is an N × kmatrix of known constants of rank k, 2 is a k × p matrix of unknown parameters, k ≤ p,

U = (u1, . . . , uN)′,
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and ui = (ui1, . . . , uip)
′ are independent and identically distributed with

E(ui) = 0, Cov (ui) = Ip, E(u4
ik) = K4 + 3, (1.2)

and for νk ≥ 0,
p

k=1 νk ≤ 4, i = 1, . . . ,N ,

E


p

k=1

uνk
ik


=

p
k=1

E(uνk
ik ). (1.3)

Here 3 = (λij) = 31/231/2 is the non-singular correlation matrix. For normally distributed ui with zero mean vector and
identity covariance matrix, the conditions (1.2)–(1.3) are satisfied with K4 = 0.

The problem of testing in the model (1.1) is that of testing the hypothesis

H : C2 = 0 vs. A : C2 ≠ 0,

where C is a q × k known matrix of rank q ≤ k. For example, in testing the equality of k = (q + 1) mean vectors, the
observation matrix Y is of the form given by

Y = (y11, . . . , y1N1; . . . ; yk1, . . . , ykNk)
′, (1.4)

where Ni independent vectors are obtained from the ith group with mean vector µi, i = 1, . . . , q + 1, and N =

N1 + · · · + Nq+1. All the observation vectors have the same covariance matrix which we have assumed in this article as
non singular correlation matrix 3. To write the problem of testing the equality of k = (q + 1) mean vectors as a regression
model, we define a vector 1r = (1, . . . , 1)′ as an r-vector with all the elements equal to one,

X =


1N1 0 0
0 1N2 0
...

...
...

0 0 1Nk

 : N × k (1.5)

and

2 = (µ1, . . . ,µk)
′
: k × p, k = q + 1. (1.6)

Thus, the regression model representing the mean vectors of k = (q + 1) groups is given by (1.1) with Y ,X and 2 defined
respectively in (1.4)–(1.6). The problem of testing the equality of k = (q + 1) mean vectors is given by H : C2 = 0 against
the alternative A : C2 ≠ 0where C is now given by q × (q + 1) matrix.

C = (Iq, −1q) : q × k, k = q + 1. (1.7)

In general, for testing the hypothesis H : C2 = 0, we consider the variation due to the hypothesis given by

B = Y ′GY , (1.8)

where

G = X(X ′X)−1C ′
[C(X ′X)−1C ′

]
−1C(X ′X)−1X ′, (1.9)

is an N × N matrix of rank q < N . The matrix G is an idempotent matrix of rank q,Gm
= G for a positive integerm. That is,

there are q eigenvalues that are equal to 1 and the remaining N − q eigenvalues are zero.
For asymptotic results for regression models under non-normal distributions, some assumptions on the so-called design

matrix X = (xij) are made. For example, it is common to assume that N−1X ′X goes to a positive definite matrix and that xij’s
are uniformly bounded. In our case, we assume that G = (gij), gij = O(N−1). This gives

N
i=1
N

j=1 g
2
ij = O(1), which in our

case is q < ∞. This also gives
N

i=1 g
2
ii = O(N−1). The above assumption along with assumptions on the correlation matrix

are stated below.

Assumption (A). A(1) For G = (gij), gij = O(N−1),
A(2) limp→∞(tr [32

]/p) < ∞,
A(3) limp→∞(tr [34

]/p2) = 0,
A(4) N = O(pδ), δ > 1/2, q < ∞,
A(5) lim(n,p)→∞{(pq)−1tr [3MM ′

]} = 0,

where

M = 2′C ′
[C(X ′X)−1C ′

]
−1/2, G+ = (gij+), (1.10)

and gij+ = |gij|, i ≠ j, i, j = 1, . . . ,N, gii ≥ 0.
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Assumption A(5) gives the local alternative under which the non-null distribution of the statistic will be obtained.
The variation due to the error which can be used to estimate the correlation matrix 3 with or without the hypothesis H

being true is given by

S = n−1Y ′(IN − H)Y , H = X(X ′X)−1X ′, n = N − k, (1.11)

where IN − H is also an idempotent matrix of rank N − q − 1 = N − k = n, (IN − H)G = 0, and hence, under normality
assumption, it implies that B and S are independently distributed but we do not have normality. The sample correlation
matrix R is defined by

R = D−1′2
S SD−1/2

S , (1.12)

where DS = diag(S) is a diagonal matrix with the same diagonal elements as the diagonal elements of S . In this paper, we
propose the test statistic

T1 =
tr [BD−1

S ] − npq(n − 2)−1

[2cp,nq(tr [R2] − n−1p2)]1/2
, n = N − k, (1.13)

where

cp,n = 1 + (tr [R2
]/p3/2) (1.14)

is a correction factor to speed up the convergence of the statistic T1 to normal which goes to one for n = O(pδ), δ > 1/2,
as given in Srivastava and Du [7]. Under the assumption of normality, Yamada and Srivastava [10] have shown that as
(n, p) → ∞, T1 is asymptotically normally distributed. In this article we show that this result holds under the general
distributions described above in (1.2)–(1.3).

The organization of this paper is as follows. In Section 2, we derive the asymptotic distribution of T1 under the general
distribution described in (1.2)–(1.3) when the hypothesis H holds. The asymptotic non-null distribution of this statistic
under local alternative is given in Section 3. The asymptotic distribution of another statistics proposed in the literature is
considered in Section 4. In Section 5, the power of the proposed test is comparedwith someexisting tests through simulation.
The results on moments are given in Section 6. The paper concludes in Section 7.

2. Asymptotic null distribution of T1

Following Corollary 2.6 of Srivastava [6], we have for i = 1, . . . , p, 6 = (σij) and S = (sij), E[s−1
ii ] = σ−1

ii + O(N−1).
Hence, s−1

ii = σ−1
ii + Op(N−1). Thus, since D6 = diag (σ11, . . . , σpp) = I ,

D−1
S = diag (s−1

11 , . . . , s−1
pp ) = diag (σ−1

11 , . . . , σ−1
pp ) + Op(N−1)

= D−1
6 [1 + Op(N−1)] = Ip[1 + Op(N−1)].

It also follows from Srivastava and Du [7] and Srivastava [6] that for N = O(pδ), δ > 1/2,

1
p


tr [R2

] − n−1p2


→ (tr [32
]/p). (2.1)

Thus, in probability

T1
p
= p−1/2tr [BD−1

S ] − pq

/(2qtr [32

]/p)1/2

p
= (pq)−1/2

[1 + Op(N−1)]tr [B] − pq

/(2tr [32

]/p)1/2

p
= (pq)−1/2

[1 + Op(N−1)][tr [B] − pq]/(2tr [32
]/p)1/2 + (pq)−1/2pq × Op(N−1)

p
= (pq)−1/2

[tr [B] − pq][1 + Op(N−1)]/(2tr [32
]/p)1/2 + Op(

√
p/N).

Since N = O(pδ), δ > 1/2, it is observed that Op(
√
p/N) = op(1). In the remainder of the paper, we show that

(pq)−1/2
[tr [B] − pq]/(2tr [32

]/p)1/2

is asymptotically normally distributed. Thus, in probability we need only to find the asymptotic distribution of

T1
p
=

1
√
pq


tr [B] − pq


/(2tr [32

]/p)1/2

=
1

√
pq


tr [Y ′GY ] − pq


/(2tr [32

]/p)1/2. (2.2)
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Under the hypothesis H : C2 = 0, and hence GX2 = 0. Thus, under H, T1 becomes

T1 =
1

√
pq


tr [3U ′GU ] − pq


/(2tr [32

]/p)1/2, (2.3)

where U = (u1, . . . , uN)′, and u1, . . . , uN are independent and identically distributed p-vectors with mean vector 0 and
covariancematrix Ip. The fourthmoment of each component of ui = (ui1, . . . , uip)

′ is the same, namely E(u4
ik) = K4+3, k =

1, . . . , p as the model satisfies the conditions (1.2)–(1.3). Alternatively, we may assume that ui1, . . . , uip are independently
distributed as is done in Srivastava [6] which results in somewhat simpler algebraic manipulations. But we will continue
with assumptions (1.2)–(1.3). Writing G = (gij), we find that the numerator of T1 in (2.3) is given by

qn,p =
1

√
pq


tr [GU3U ′

] − pq


=
1

√
pq


N
i=1

N
j=1

giju′

i3uj − pq



=
1

√
pq


N
i=1

giiu′

i3ui − pq


+

1
√
pq

N
i≠j

giju′

i3uj

= J1 + J2. (2.4)
We note that

E(J1) =
1

√
pq


N
i=1

gii(tr3) − pq


= 0,

since tr (3) = p and
N

i=1 gii = q. Using Lemma 6.1 given in Section 6, we find that the variance of J1 is given by

Var(J1) =
1
pq

N
i=1

g2
ii (K4p + 2tr [32

])

= [K4 + (2tr [32
]/p)]


N
i=1

g2
ii/q


= o(1). (2.5)

Hence, the first term goes to zero in probability. Thus, in probability

qn,p
p
=

1
√
pq

N
i≠j

giju′

i3uj =
2

√
pq

N
j=2

j−1
i=1

giju′

i3uj (2.6)

with E(qn,p) = 0, and

Var(qn,p) =
4
pq

N
j=2

j−1
i=1

g2
ij tr [3

2
] =

2
pq

N
i≠j

g2
ij tr [3

2
]

∼= 2tr [32
]/p < ∞, (2.7)

from the Assumption (A). Let

ηj =
2

√
pq

j−1
i=1

giju′

i3uj, (2.8)

and let ℑj be the σ -algebra generated by the random vectors u1, . . . , uj. Letting u0 = 0, and ℑ0 = (φ, Ω) = ℑ−1, where φ
is the empty set and Ω the whole space, we find that ℑ0 ⊂ ℑ1 ⊂ · · · ⊂ ℑN ⊂ ℑ, and

E(ηj|ℑj−1) = 0, E(ηj) = 0,

E(η2
j |ℑj−1) =

4
pq

j−1
i=1

g2
ijE[u′

i3uju′

j3ui|ℑj−1] +
4
pq

j−1
i≠k

gijgkjE[u′

i3uju′

j3uk|ℑj−1]

=
4
pq

j−1
i=1

g2
iju

′

i3
2ui +

4
pq

j−1
i≠k

gijgkju′

i3
2uk, (2.9)

E(η2
j ) = 4


j−1
i=1

g2
ij


(tr [32

]/pq) < ∞. (2.10)
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Hence, the sequence {ηk, ℑk} is a sequence of integrable martingale difference. Thus, to establish the asymptotic normality
of the random variable qn,p given in (2.5), we may use Theorem 4 from Shiryaev [4]. This requires establishing the Lindberg
condition.

For ε > 0,

(I) L =
N

k=2 E[η2
k I(|ηk| > ε)|ℑk−1]

p
→ 0 in probability.

And we have to show that

(II) C =
N

k=2 E(η2
k |ℑk−1)

p
→ σ 2

0 for some constant σ 2
0 .

We first show (II). From (2.10) we find that

N
j=2

E(η2
j ) = 4


N
j=2

j−1
i=1

g2
ij


(tr [32

]/pq)

= 2


N
i≠j

g2
ij


(tr [32

]/pq)

→ 2(tr [32
]/p) = σ 2

0 < ∞.

Thus, to show that the convergence condition (II) is satisfied, we need to show that the variance of the random variable C
goes to zero. From (2.9), the variance of C is given by

Var(C) =
16
q2p2

Var


N
j=2


j−1
i=1

g2
iju

′

i3
2ui + 2

j−1
i<k

gijgkju′

i3
2uk


.

We will show that the variance of each term in the right hand side goes to zero which will imply that Var(C) goes to zero.
We first note that

N−1
i=1 (

N
j=i+1 g

2
ij )

2
≤ (

N
i≠j g

2
ij )

2. Hence, the variance of the first term is

16
q2p2

Var


N
j=2


j−1
i=1

g2
iju

′

i3
2ui


=

16
q2p2

Var


N−1
i=1

(u′

i3
2ui)


N

j=i+1

g2
ij



≤
16
p2q2


K4

p
i=1

(32)2ii + 2tr [34
]


i≠j

g2
ij

2

where (32)ii is the (i, i)th term of 32, i = 1, . . . , p. Since
p

i=1

(32)2ii/p
2


≤ (tr [34

]/p2) → 0,

and (


i≠j g
2
ij )

2/q2 ≤ 1, the variance of the first term goes to zero. Next, we show that under Assumption (A), the variance
of the second term goes to zero. That is

4
p2q2

Var


2

N
j=2

j−1
l<k

gljgkju′

l3
2uk


=

16
p2q2

Var


N−1
k<l


N

j=l+1

gjkgjl


u′

k3
2ul



=
16
p2q2

(tr [34
])

N−1
k<l


N

j=l+1

gjkgjl

2

≤ 16(tr [34
]/p2) × O(1),

which goes to zero under Assumptions A(3). Then,

N
k=2

E(η2
k |ℑk−1)

p
→ σ 2

0 = 2(tr [32
]/p).

To show that Lindberg’s condition (L) is satisfied, we need to only show that

N
j=2

E(η4
j ) → 0 as N → ∞.
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Thus, from (2.8), we need to evaluate

16
p2q2

N
j=2

E


j−1
i=1

giju′

i3uj

4
=

16
p2q2

N
j=2

E


j−1
i=1

g2
ij (u

′

i3uj)
2
+

j−1
i≠l

gijglj(u′

i3uj)(u′

l3uj)

2
= 16(I1 + I2 + 2I3),

where I1 = (pq)−2N
j=2 E[{

j−1
i=1 g

2
ij (u

′

i3uj)
2
}
2
],

I2 =
1

p2q2

N
j=2

E


j−1
i≠l

gijglj(u′

i3uj)(u′

l3uj)

2
,

I3 =
1

p2q2

N
j=2

E


j−1
i=1

g2
ij (u

′

i3uj)
2
×

j−1
i≠l

gijglj(u′

i3uj)(u′

l3uj)


.

Note that

1
p2q2

N−1
j=2

E


j−1
i=1

g2
ij (u

′

i3uj)
2

2
=

1
p2q2

N−1
j=1

E


j−1
i=1

g4
ij (u

′

i3uj)
4
+

j−1
i≠k

g2
ijg

2
kj(u

′

i3uj)
2(u′

i3uk)
2



=
1

p2q2

N−1
j=1


j−1
i=1

g4
ijE[(u′

i3uj)
4
] +

j−1
i≠k

g2
ijg

2
kjE[(u′

i3
2ui)

2
]


.

From Lemmas 6.1(a) and 6.2 with A = 32, p−2E[(u′

i3
2ui)

2
] = O(1) and p−2E[(u′

i3uj)
4
] is of O(1) under Assumption A(3).

Hence from A(1), I1 = O(N−1). Similarly, it can be shown that

I2 =
1

p2q2

N−1
j=2

j−1
i≠l

g2
ijg

2
ljE[(u′

j3
2uj)

2
] = O(N−1),

and that I3 = 0. Hence Lindberg’s condition (L) is satisfied. Thus, we have proved the following theorem.

Theorem 2.1. Consider the model (1.1) satisfying (1.2) and (1.3). Then under the hypothesis H : C2 = 0, the statistic T1 defined
in (1.13) is asymptotically normally distributed with mean 0 and variance 1, namely

lim
(N,p)→∞

P0 {T1 < z1−α} = Φ(z1−α)

where Φ denotes a standard normal distribution function, and P0 denotes that the probability has been computed under the
hypothesis H.

Corollary 2.1. Under the hypothesis as (N, p) → ∞, we get from (2.6)

T1
p
=

N
i≠j

gijy ′

iyj/

2cp,nq(tr [R2

] − n−1p2)
1/2

,

where G = (gij) = X(X ′X)−1C ′
[C(X ′X)−1C ′

]
−1C(XX)−1X ′.

3. Asymptotic non-null distribution of T1

In this section, we derive the asymptotic distribution of the statistic T1 under local alternative given by Assumption A(5),
namely

lim
(N,p)→∞

(pq)−1tr [3MM ′
] = 0, (3.1)

where

M = 2′C ′
[C(X ′X)−1C ′

]
−1/2. (3.2)

From Theorem 2.1, it follows that in probability the statistic

T1
p
= (pq)−1/2tr Y ′GY − pq


/(2tr [32

]/p)1/2
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goes to N (0, 1) under the hypothesis H . This implies that irrespective of any hypothesis, the random variable

T ∗

1 = (pq)−1/2tr [(Y − X2)′G(Y − X2)] − pq

/(2tr [32

]/p)1/2

=
(pq)−1/2

(2tr [32
]/p)1/2


tr [Y ′GY ] − 2tr [2′X ′GY ] + tr [2′X ′GX2] − pq


= T1 +

(pq)−1/2

(2tr [32
]/p)1/2


−2tr [2′X ′GY ] + tr [2′X ′GX2]


→ N (0, 1) as (N, p) → ∞.

It may be noted that the random variable T ∗

1 depends on unknown parameters2. We now show that under Assumption A(5)

(pq)−1/2tr [2′X ′GY ] → (pq)−1/2tr [2′X ′GX2].

Let

A = 2′X ′G = (a1, . . . , an), Y = (y1, . . . .yN)′.

Then

E[(pq)−1/2tr [AY ]] = (pq)−1/2tr [A2X] = (pq)−1/2tr [2′X ′GX2]

and since G2
= G ,

Var[(pq)−1/2tr [AY ]] = (pq)−1Var


tr

N
i=1

aiy ′

i


= (pq)−1Var


N
i=1

a′

iyi



= (pq)−1
N
i=1

a′

i3ai = (pq)−1tr


3


N
i=1

aia′

i


= (pq)−1tr [3AA′

] = (pq)−1tr [32′X ′GX2′
]

= (pq)−1tr [3MM ′
],

which goes to zero under Assumption A(5). Thus,

(pq)−1/2tr [2′X ′GY ]
p

→ (pq)−1/2tr [2′X ′GX2]

= (pq)−1/2trMM ′

and

T ∗

1
p
= T1 − (pq)−1/2tr [MM ′

]/


2tr32/p.

Hence,

P1

T1 > z1−α| under A(5)


= P1


T1 −

tr [MM ′
]

2qtr [32
]

> z1−α −
tr [MM ′

]
2qtr [32

]



= P1


T ∗

1 > z1−α +
tr [MM ′

]
2qtr [32

]



= Φ


−z1−α +

tr [MM ′
]

2qtr [32
]


,

where P1 denotes that the probability has been computed under the local alternative hypothesis given in A(5). It may be
noted that if the assumption that D6 = Ip, where D6 = diag(σ11, . . . ., σpp), 6 = (σij) is dropped, then the power can be
written as

P1 {T1 > zα| under A(5)} = Φ


−zα +

tr [D−1
6 MM ′

]
2qtr [32

]


,

for the model Y = X2 + 61/231/2U . Hence, we get the following theorem.

Theorem 3.1. Under the model Y = X2 + U31/2D1/2
6 , where the elements of U satisfies conditions (1.2)–(1.3)

P1 {T1 > zα} = Φ


−zα +

tr [D−1
6 MM ′

]
2qtr [32

]


.

Assumption A(5) becomes lim(N,p)→∞(pq)−1tr [3D−1/2
6 MM ′D−1/2

6 ] = 0.
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4. Other tests

Bai and Saranadasa [1] proposed a two-sample test for testing the equality of twomean vectors. A generalized version of
this test for the MANOVA problem was given by Srivastava and Fujikoshi [8] for normally distributed observation vectors.
It is given by

T2 = [2pqâ2(1 + n−1q)]−1/2tr [B] − qtr [S]

,

where

â2 =
1
p


tr [S2

] −
1
n
(tr [S])2


.

Under the hypothesis H : C2 = 0, T2 is asymptotically normally distributed as N (0, 1). That is,

lim
(N,p)→∞

P0 {T2 < zα} = Φ(zα).

By following the methods given in Section 2 of this article, it can be shown that the asymptotic normality of T2 under the
hypothesis still holds for the non-normal model considered in this paper under the correspondingmodified assumptions on
the covariancematrix6 in place of the correlationmatrix3. Similarly it can be shown that under the alternative hypothesis
A(5), the asymptotic distribution is given by

lim
(n,p)→∞

P1 {T2 > zα} = Φ


−zα +

tr [MM ′
]

2qtr [62
]


.

The test T2 for normally distributed observation vectorswas also considered by Schott [3]whoobtained its distributionunder
the condition that (n/p) goes to a constant as (n, p) → ∞. It has been shown in Srivastava andDu [7] that T1 performs better
than T2 for the case of two samples. The test proposed by Srivastava [5], which has been shown to perform better than T2
in Srivastava and Fujikoshi [8] is not considered in this paper as its distribution under the non-normal model has yet to be
derived.

5. Power and attained significance level

In this section we compare the power of the statistics T1 and T2 in finite samples by simulation. We first examine the
attained significance level to the nominal value α = 0.05.

The attained significance level (ASL) is α̂T = #(T1H > z1−α)/r where T1H are values of the test statistic T1 (or T2) computed
from data simulated under H, r is the number of replications and z1−α is the 100(1 − α)% point of the standard normal
distribution. The ASL assesses how close the null distribution of T1 (or T2) is to its limiting null distribution. From the same
simulation, we also obtain ẑ1−α as the 100(1 − α)% point of the empirical null distribution, and define the attained power
by β̂T = #(T1A > ẑ1−α)/r , where T1A are values of the T1 (or T2) computed from data simulated under A.

Through the simulation, we compare the proposed test T1 with T2. It may be noted that irrespective of the ASL of any
statistic, the power has been computed when all the statistics in the comparison have the same specified significance level
as the cut off points have been obtained by simulation. The ASL gives an idea as to how close it is to the specified significance
level. If it is not close, the only choice left is to obtain it from simulation, not from the asymptotic distribution. It is common
in practice, although not recommended, to depend on the asymptotic distribution, rather than relying on simulations to
determine the ASL.

For simulation, we consider the problem of testing the equality of 3 mean vectors, that is, k = q + 1 = 3 and q = 2,
where N1 = N2 = N3 = N∗, and the cases of (N∗, p) = (10, 40), (20, 80), (30, 120) and (40, 200) are treated. Note that
n = N1 + N2 + N3 − k = 3(N∗

− 1). For the three mean vectors, we write

2 = (µ1, µ2, µ3)
′
: 3 × p,

C =


1 0 −1
0 1 −1


, C2 =


µ′

1 −µ′

3
µ2 −µ′

3


.

The observation matrix is

Y = (y(1)
1 , . . . , y(1)

N∗ ; y(2)
1 , . . . , y(2)

N∗ ; y(3)
1 , . . . , y(3)

N∗ )′

XN×3 =

1N∗ 0 0
0 1N∗ 0
0 0 1N∗


,

where 1N∗ = (1, . . . , 1)′ : N∗
×1 forN = 3N∗. For the hypothesis, without loss of generalitywe chooseµ1 = µ2 = µ3 = 0.

For the alternative hypothesis, we choose µ1 = 0, µ2 = 3n−1/2p−1/41′
p, µ3 = −µ2.

To generate the Y matrix from a non-normal distribution, we generate 3N∗p i.i.d. random variables uij from three kinds
of chi-square distributions, namely, χ2

2 , χ2
8 and χ2

32 with 2, 8 and 32 degrees of freedom, respectively, and centre them and
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scale them as

νij = (uij − m)/
√
2m,

for uij ∼ χ2
m, m = 2, 8, 32. Since the skewness and kurtosis (K4 + 3) of χ2

m is, respectively, (8/m)1/2 and 3 + 12/m, it is
noted that χ2

2 has higher skewness and kurtosis than χ2
8 and χ2

32. Write them as

V = (ν
(1)
1 , . . . , ν

(1)
N∗ ; ν

(2)
1 , . . . , ν

(2)
N∗ ; ν

(3)
1 , . . . , ν

(3)
N∗ )

′

where ν
(i)
j vectors are p-vectors, j = 1, . . . ,N∗, i = 1, 2, 3. For the covariance matrix, we consider the following three

cases:

(Case 1) 6 is the identity matrix 6 = Ip.
(Case 2) 6 is a diagonal matrix 6 = Da = diag (a21, . . . , a

2
p), where ai are i.i.d. as chi-square with 3 degrees of freedom.

(Case 3) 6 is a fully unknown matrix, where

6 =


σ1

σ2
. . .

σp




ρ |1−1|
1
7

ρ |1−2|
1
7

· · · ρ |1−p|
1
7

ρ |2−1|
1
7

ρ |2−2|
1
7

· · · ρ |2−p|
1
7

. . .

ρ|p−1|
1
7

ρ|p−2|
1
7

· · · ρ|p−p|
1
7




σ1
σ2

. . .

σp

 ,

for ρ = 0.2 and diag (σ1, . . . , σp) = D1/2
a given in (Case 2).

For the first case, we define

(Case 1) Y = V + X(0, µ2, µ3)
′,

where under the hypothesis, Y = V , and under the alternative,µ2 andµ3 are replaced by the vectors mentioned above. For
the second case,

(Case 2) Y = VD1/2
a + X(0, µ2, µ3)

′,

where under the hypothesis, Y = VD1/2
a , and in the alternative,µ2 andµ3 are replaced by the vectors mentioned above. For

the third case,

(Case 3) Y = V61/2
+ X(0, µ2, µ3)

′,

where under the hypothesis, Y = V61/2, and in the alternative, µ2 and µ3 are replaced by the vectors mentioned above.
The simulation results under the χ2

m distributions for m = 2, 8 and 32 are presented in Tables 1–3, respectively. The
critical values are computed based on 100,000 replications and the ASL and the powers are obtained based on 10,000
replications. It is noted that the 95% point of the standard normal distribution is 1.64485. Three tables report the critical
values and the power in the hypothesis of the two tests, and it is seen that the values of the ASL are appropriate. As reported
in the tables, the powers of the two tests perform similarly in Case 1, but the proposed test T1 has much higher powers than
T2 in Case 2. For the χ2

2 -distribution, which has higher skewness and kurtosis, T1 has slightly higher power than T2 in Case 1.
Clearly, when 6 = Ip, all the components have the same unit of measurements and hence both tests perform equally well
but when the unit of measurements are not the same, as in Case 2, the proposed test performs much better than the test
based on T2. The ASL and the powers of T1 in Case 3 are slightly worse than those in Case 2. However, T1 is still better in ASL
and power than T2 in Case 3.

6. Results on moments

We here provide results on moments.

Lemma 6.1. Let u = (u1, . . . , up)
′ be a p-dimensional random vector such that E[u] = 0, Cov [u] = Ip, E[u4

i ] = K4 + 3, i =

1, . . . , p, and

E[ua
i u

b
j u

c
ku

d
l ] = E[ua

i ]E[ub
j ]E[uc

k]E[ud
l ], (6.1)

0 ≤ a + b + c + d ≤ 4 for all i, j, k, l. Then for any p × p symmetric matrices A = (aij) and B = (bij) of constants, we have

(a) E[(u′Au)2] = K4
p

i=1 a
2
ii + 2tr [A2

] + (tr [A])2,
(b) Var[u′Au] = K4

p
i=1 a

2
ii + 2tr [A2

],
(c) E[u′Auu′Bu] = K4

p
i=1 aiibii + 2tr [AB] + tr [A]tr [B].
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Table 1
Critical values, ASL and powers of the tests T1 and T2 in the case of χ2

2 -distribution with skewness 2 and kurtosis 9.

N∗ p Critical value ASL in H Power in A
T1 T2 T1 T2 T1 T2

Case 1

10 40 1.6061 1.5966 4.61 4.59 92.04 85.02
20 80 1.5632 1.6225 4.16 4.58 90.46 85.65
30 120 1.5622 1.6440 3.98 4.71 89.94 86.21
40 200 1.5564 1.6386 4.53 5.38 90.43 87.40

Case 2

10 40 1.6061 1.6865 4.61 5.79 99.96 24.71
20 80 1.5632 1.6784 4.16 5.36 99.63 18.20
30 120 1.5622 1.6919 3.98 4.97 97.82 15.20
40 200 1.5564 1.6852 4.53 5.43 96.26 16.97

Case 3

10 40 1.7259 1.7700 5.86 6.39 97.78 23.26
20 80 1.6657 1.7697 5.54 6.05 86.45 17.60
30 120 1.6564 1.7583 5.17 6.12 72.30 15.47
40 200 1.6652 1.7795 5.61 6.27 63.19 15.66

Table 2
Critical values, ASL and powers of the tests T1 and T2 in the case of χ2

8 -distribution with skewness 1 and kurtosis 4.5.

N∗ p Critical value ASL in H Power in A
T1 T2 T1 T2 T1 T2

Case 1

10 40 1.7339 1.7029 5.90 5.52 84.92 84.48
20 80 1.6175 1.6810 4.85 5.55 86.92 86.19
30 120 1.6119 1.6812 4.51 5.17 87.04 86.49
40 200 1.5967 1.6714 4.19 4.99 87.80 87.26

Case 2

10 40 1.7339 1.7903 5.90 6.25 99.93 23.56
20 80 1.6175 1.7276 4.85 6.11 99.27 18.89
30 120 1.6119 1.7344 4.51 5.83 97.06 15.56
40 200 1.5967 1.7291 4.19 5.79 94.70 16.38

Case 3

10 40 1.8053 1.8515 6.30 6.79 97.17 22.56
20 80 1.6873 1.7895 5.27 6.65 85.15 18.22
30 120 1.6728 1.8000 4.99 6.14 71.27 15.32
40 200 1.6741 1.7853 5.09 6.19 61.60 16.13

Table 3
Critical values, ASL and powers of the tests T1 and T2 in the case of χ2

32-distribution with skewness 0.5 and kurtosis 3.375.

N∗ p Critical value ASL in H Power in A
T1 T2 T1 T2 T1 T2

Case 1

10 40 1.7688 1.7184 5.79 5.44 82.13 84.72
20 80 1.6457 1.6930 4.73 5.22 84.12 84.89
30 120 1.6155 1.6812 4.33 4.97 86.09 86.20
40 200 1.6090 1.6831 4.73 5.33 86.84 87.08

Case 2

10 40 1.7688 1.8157 5.79 6.64 99.97 23.15
20 80 1.6457 1.7409 4.73 5.37 98.93 16.80
30 120 1.6155 1.7476 4.33 5.71 96.46 15.85
40 200 1.6090 1.7223 4.73 5.63 94.55 16.61

Case 3

10 40 1.8644 1.9536 6.23 6.73 96.60 21.74
20 80 1.8889 1.8132 5.49 6.21 83.08 15.97
30 120 1.7733 1.9282 5.15 6.55 71.25 15.77
40 200 1.5788 1.7836 5.32 6.13 61.56 15.72
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Proof. For (a), note that aij = aji. Then under condition (6.1),

E[(u′Au)2] = E


p

i=1

aiiu2
i + 2

p
j<k

ajkujuk

2

= E


p

i=1

a2iiu
4
i +

p
i≠j

aiiajju2
i u

2
j + 4


p

j<k

ajkujuk

2

+ 8

j<k

ajjajku3
j uk + 8


i≠j,j<k

aiiajku2
i ujuk



= (K4 + 3)
p

i=1

a2ii +
p
i≠j

aiiajj + 4
p

j<k

(ajk)2

= K4

p
i=1

a2ii +


p

i=1

a2ii +
p
i≠j

aiiajj


+ 2

p
i=1

a2ii + 2
p
i≠j

(aij)2

= K4

p
i=1

a2ii + (tr [A])2 + 2tr [A2
].

For (b), from condition (6.1), it follows that

E[u′Au] = E


p

i=1

aiiu2
i +


i≠j

aiiajjuiuj


=

p
i=1

aii = trA,

which, together with the equality in (a), yields the equality in (b).
For (c), it is seen that

E[u′Auu′Bu] = E


p

i=1

aiiu2
i + 2

p
i<j

aijuiuj


p

i=1

biiu2
i + 2

p
i<j

bijuiuj



= γ

p
i=1

aiibii +

i≠j

aiibjj + 4

i<j

aijbij,

for γ = K4 + 3. Noting that tr [AB] =
p

i=1 aiibii + 2
p

i<j aijbij and tr [A]tr [B] =
p

i=1 aiibii +
p

i≠j aiibjj, we can get the
equality in (c). �

Corollary 6.1. Let ū = N−1N
i=1 ui, where u1, . . . , uN are independently and identically distributed. Then

Var(ū′Aū) =
K4

N3

p
i=1

a2ii +
2
N2

tr [A2
].

Proof. This corollary is shown as follows:

N2Var(ū′Aū) =
1
N2

Var


N
i=1

ui

′

A


N
i=1

ui



=
1
N2

Var


N
i=1

u′

iAui + 2
N
i<k

u′

jAuk


,

which can be rewritten as

1
N2

Var


N
i=1

u′

iAui


+

4
N2

Var


N
j<k

u′

jAuk


+

4
N2

Cov


N
i=1

u′

iAui,

N
j<k

u′

jAuk



=
1
N
Var[u′

1Au1] +
2N(N − 1)

N2
tr [A2

]

=
1
N


K4

p
j=1

a2jj + 2tr [A2
]


+

2(N − 1)
N

tr [A2
]

=
1
N
K4

p
j=1

a2jj + 2tr [A2
]. �
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Lemma 6.2. Let u and v be independently and identically distributed random vectors with zero mean vector and covariance
matrix Ip. Then under condition (6.1) for any p × p symmetric matrix A = (aij),

Var[(u′Av)2] = K 2
4

p
i,j

a4ij + 6K4

p
i,j,k

a2ija
2
ik + 6tr [A4

] + 2(tr [A2
])2.

Proof. Since E[(u′Av)2] = E[u′Avv ′Au] = tr [A2
], we have Var[(u′Av)2] = E[(u′Av)4] − (tr [A2

])2. Let C = (cij) = Avv ′A.
Then, tr [C] = v ′A2v and tr [C2

] = tr [Avv ′AAvv ′A] = (v ′A2v)2 = (tr [C])2. Since (u′Av)4 = (u′Cu)2, from (a) and (c) in
Lemma 6.1, it follows that

E[(u′Av)4] = E[(u′Cu)2] = E

E[(u′Cu)2|C]


= E


K4

p
i=1

c2ii + 2tr [C2
] + (tr [C])2



= E


K4

p
i=1

c2ii + 3(v ′A2v)2


= K4

p
i=1

E[c2ii ] + 3


K4

p
i=1

{(A2)ii}
2
+ 2tr [A4

] + (tr [A2
])2


.

Let A′
= (a1, . . . , ap) for column vectors ai’s. Since C = Avv ′A′ and v ′A′

= (v ′a1, . . . , v ′ap), it is seen that cii = a′

ivv
′ai =

v ′aia′

iv and c2ii = (v ′aia′

iv)
2

= (v ′Giv)2 for Gi = aia′

i . Hence, from (a) in Lemma 6.1,

E[c2ii ] = E[(v ′Giv)2]

= K4

p
j=1

{(Gi)jj}
2
+ 2tr [G2

i ] + (tr [Gi])
2

= K4

p
j=1

{(Gi)jj}
2
+ 3(a′

iai)
2.

Since Gi = aia′

i , it is noted that (Gi)jj = a2ij. Since A2
= AA′

= (a1, . . . , ap)
′(a1, . . . , ap), it is seen that (A2)ii = a′

iai =p
j=1 a

2
ij. Hence, we get

E[(u′Av)4] = K 2
4

p
i=1

p
j=1

a4ij + 3K4

p
i=1

(a′

iai)
2
+ 3K4

p
i=1

(a′

iai)
2
+ 6tr [A4

] + 3(tr [A2
])2.

Thus,

Var[(u′Av)2] = K 2
4

p
i=1

p
j=1

a4ij + 6K4

p
i=1

(a′

iai)
2
+ 6tr [A4

] + 2(tr [A2
])2.

Noting that
p

i=1(a
′

iai)
2

=
p

i=1

p
j=1 a

2
ij

2
=
p

i,j,k a
2
ija

2
ik, we get the equality in Lemma 6.2. �

7. Concluding remarks

In this article, we have proposed a test which is invariant under the change of unit of measurements. It has been shown
to perform better than the test proposed by Srivastava and Fujikoshi [8] and Schott [3] unless 6 = σ 2Ip in which case both
tests are equally good. Our simulation results show that both tests are robust and the assumptions of normality is not needed
to carry out any of the two tests.
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